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Abstract—The General Dynamics (GD) S-Band software 

defined radio (SDR) in the Space Communications and 

Navigation (SCAN) Testbed on the International Space Station 

(ISS) provides experimenters an opportunity to develop and 

demonstrate experimental waveforms in space.  The SDR has 

an analog and a digital automatic gain control (AGC) and the 

response of the AGCs to changes in SDR input power and 

temperature was characterized prior to the launch and 

installation of the SCAN Testbed on the ISS.  The AGCs were 

used to estimate the SDR input power and SNR of the received 

signal and the characterization results showed a nonlinear 

response to SDR input power and temperature.  In order to 

estimate the SDR input from the AGCs, three algorithms were 

developed and implemented on the ground software of the 

SCAN Testbed.  The algorithms include a linear straight line 

estimator, which used the digital AGC and the temperature to 

estimate the SDR input power over a narrower section of the 

SDR input power range.  There is a linear adaptive filter 

algorithm that uses both AGCs and the temperature to 

estimate the SDR input power over a wide input power range.  

Finally, an algorithm that uses neural networks was designed 

to estimate the input power over a wide range.  This paper 

describes the algorithms in detail and their associated 

performance in estimating the SDR input power. 
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1. INTRODUCTION 

The General Dynamics (GD) S-Band software defined radio 

(SDR) in the Space Communications and Navigation 

(SCaN) Testbed [1] on the ISS provides experimenters an 

opportunity to develop and demonstrate experimental 

waveforms in space.  The initial GD SDR receive waveform 

includes three reconfigurable parameters – data rate, coding 

on/off, and center frequency.  The receive waveform is a 

spread signal and is compatible with the Tracking Relay 

Data Satellite System (TDRSS) [2].  The S-Band RF center 

frequency can be changed to operate with the TDRSS Single 

Access (SA) or Multiple Access (MA) modes.  The receive 

waveform can be configured to operate at two data rates – 

18 and 72 kbps.  The Viterbi decoder for forward error 

correction can be enabled and disabled.  These three 

parameters lead to the eight different receive waveform 

combinations that are found in Table 1.   

The GD SDR has an analog and a digital automatic gain 

control (AGC) that adjust the received RF power to a 

constant level for receive signal processing.  The response 

of the AGCs to changes in SDR input power (from -130 

dBm to -90 dBm) and temperature (from -20 °C to +60 °C) 

for all eight receive waveform configurations was 

characterized prior to the launch and installation of the 

SCaN Testbed on the ISS.  The characterization results [3] 

showed a nonlinear response to SDR input power and 

temperature.  The AGCs respond differently for all eight 

SDR receive waveforms.  The AGCs scale based on total 

received RF power, so varying noise conditions or the 

present of interferers will affect the AGC output. 

A desirable function of an SDR is to estimate the received 

signal input power in order to better understand and predict 

link performance.  The AGCs on the GD SDR will be used 

to estimate the SDR input power of the received signal.  In 

order to estimate the SDR input from the AGCs for all eight 

receive waveforms, three algorithms were developed and 

implemented on the ground software of the SCaN Testbed.  

In sections 2-4 the algorithms are described in detail and 

their associated performance in estimating the SDR input 

power. Initial performance results of the SDR input power 

estimators from on-orbit operations are discussed in section 

5. 

Table 1. GD SDR Receive Waveform Description 

Waveform 

ID 

Data 

Rate 

(kbps) 

Forward 

Error 

Correction 

Frequency 

1 18 Uncoded SA 

2 18 Coded SA 

3 18 Uncoded MA 

4 18 Coded MA 

5 72 Uncoded SA 

6 72 Coded SA 

7 72 Uncoded MA 

8 72 Coded MA 
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2. STRAIGHT LINE ESTIMATOR  

The straight line estimator uses the digital AGC and the 

baseplate temperature to estimate the SDR input power over 

a smaller section of the SDR input power range.  The SDR 

input power range in which the straight-line estimator is 

valid is listed in Table 2.  This is the linear range of the 

digital AGC. 

 

Table 2. Straight Line Estimator Power Range 

Waveform 

Minimum 

SDR Input 

Power 

(dBm) 

Maximum 

SDR Input 

Power 

(dBm) 

SA/MA, uncoded, 18 kbps -124.0  -111.0 

SA/MA, coded, 18 kbps -122.0 -107.5 

SA/MA, uncoded, 72 kbps -118.0 -105.5 

SA/MA, coded, 72 kbps -116.0  -103.0 

 

Straight Line Algorithm Description 

The straight-line estimator is the simplest estimator.  

Straight-line equations for the SDR input power as a 

function of the digital AGC were created using the 

Microsoft Excel function LINEST.  In order to compensate 

for the differences over temperature, the baseplate 

temperature was divided into three bins, <10 °C (cold), 10-

35 °C (ambient), and > 35 °C (hot).  The digital AGC 

characterization results showed that the digital AGC 

performance was only dependent on the data rate and coding 

status, not the center frequency.  Therefore, only four 

different sets of equations were created for the eight 

different waveform combinations described in Table 1.  For 

example, the 18 kbps, uncoded SA and MA waveforms have 

the same equations for computing SDR input power from 

the digital AGC.  Each set of equations consists of three 

equations (ambient, cold, and hot).  Figure 1 shows the 

equations for the SA and MA frequencies, 72kbps, uncoded 

waveforms at the three different temperatures. 

 

Figure 1 - Equations for Straight Line Estimator 

Error Analysis 

The digital AGC is only linear for SDR input power levels 

specified in Table 2 or less.  Therefore, the straight line 

estimator is not valid for SDR input power levels higher 

than those listed in Table 2 because there will be a lot more 

error.  The error histograms within the valid power ranges 

for this estimator are shown in Figure 2.  A regression plot 

for all eight waveforms is shown in Figure 3.  

 

Figure 2 - Straight Line Estimator Error Histograms 

 

 

Figure 3 – Straight Line Estimator Regression Plot 
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3. ADAPTIVE LINEAR COMBINER ESTIMATOR 

The adaptive linear combiner [4] estimator uses the digital 

and analog AGCs, the GD SDR baseplate temperature, and 

a constant to estimate the SDR input power over a wide 

input power range from -130 dBm to -90 dBm.  The 

adaptive linear combiner estimator is based on the adaptive 

linear combiner shown in Figure 4.  The inputs consisting of 

the digital AGC, analog AGC, baseplate temperature and a 

constant are multiplied by a weight vector to create the SDR 

input power estimate.  The constant was inserted to act as 

the DC offset and it decreases the estimator error.  During 

training, the SDR input power error is calculated and the 

weight vector is updated with the least mean square 

algorithm shown in equation 1.  After the weight vector has 

been computed, the estimated SDR input power can be 

calculated as shown in equation 2. 

 (1) 

  (2) 

  (3) 

  (4) 

where 

W = weight vector  

X = digital AGC, analog AGC, baseplate 

temperature, and a constant 

A = actual measured SDR Input Power 

Y = estimated SDR input power 

α = loop update gain factor 
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Figure 4 - Adaptive Linear Combiner 

 

Adaptive Linear Combiner Algorithm Description 

A general outline of the adaptive linear combiner training 

algorithm is listed below:  

(1) Input the training data set, which consists of the digital 

AGC, analog AGC, baseplate temperature, and 

measured SDR input power. 

(2) Sort the data into 3 temperature bins (<10 °C - cold, 10 

°C – 35 °C –ambient, >35 °C – hot).  These 

temperature bins were chosen based on the linear 

regions of the training data. 

(3) Randomize the data in each bin in order to eliminate 

trends that might be created by sorting by SDR input 

power or temperature. 

(4) Initialize the weight vector, W. 

(5) Compute the weight vector for each temperature bin. 

(6) Repeat the previous step using the last value for the 

weight vector as the initial value for the next weight 

vector until the weight vector converges. 

(7) Calculate the estimated output power, Y, using the 

weight vector and analyze the error. 

Temperature Membership Functions 

In a nonlinear system, a set of linear equations can be used 

to approximate the nonlinear system if the system is divided 

into smaller linear segments.  In this system, the response of 

the AGCs to changes in temperature is nonlinear so the data 

set was divided into three temperature bins and weight 

vectors were calculated for each bin (Wc, Wa, Wh).  The 

temperature bin were <10 °C (cold), 10-35 °C (ambient), 

and > 35 °C (hot).  In order to smooth the output power 

calculation when transitioning between the temperature 

bins, triangular membership functions were created.  A 

membership function is a way of classifying the probability 

that a particular data point is within a given range.  In this 

case, the temperature was divided into three bins and 

membership functions were chosen subjectively.  The 

membership functions are shown in Figure 5.  If 

membership functions were not used, there would be a 

discontinuity when the temperature crosses the bin 

boundaries.  If the temperature falls between the ambient 

and the cold temperature bins, the estimated SDR input 

power is a function of both the cold (Wc) and the ambient 

(Wa) weight vectors.  For example, if the temperature is 

17.5 °C, the estimated SDR input power is shown in 

equation 5. 

  (5) 
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Figure 5 - Temperature Membership Functions  

Randomized Input Data 

The data set used to compute the weight vector was 

randomized.  If the data set was sorted by SDR input power 

before computing the weight vector, the weight vector 

would change with the SDR input power and never 

converge to an average value.  The goal was to achieve an 

average weight vector over all SDR input powers, and this 

requires a randomized data set.  

Weight Vector Convergence and α 

The weight vector, W, is computed through many loop 

iterations of equation 1.  The mean square error of the 

estimated SDR input power error is minimized while 

computing W.  In each loop iteration, W is updated with a 

gain factor, α.  A larger α will lead W to converge to a final 

value faster.  Less loop iterations are needed with a larger α.  

However, a larger α will also lead to larger standing 

oscillations in W.  Large standing oscillations in W can be a 

source of error bias in the output of the estimator.  Since the 

data is randomized differently each time W is calculated 

from the data set, a large standing oscillation could lead to a 

different W and a different error bias.  This problem can be 

solved by choosing an α (and corresponding number of loop 

iterations – a smaller α will need more loop iterations) small 

enough so that the error bias will not produce a significant 

fluctuation in the output. 

For this estimator, the peak to peak amplitude of the W 

vector oscillation must be in the 10-4 decade or less.  This 

will produce less than .1 dB of variation in the SDR ouput 

power estimate every time W is calculated.  The peak to 

peak amplitude of the last 100 iterations in the W 

calculation is shown in Figure 6.  The peak to peak 

amplitude also varies due to the sources of error from the 

data collection.  The weight vectors with the highest peak to 

peak amplitude are from the waveforms in which the most 

data was collected (18k, uncoded, SA & MA), and thus the 

most variation.  

 

 

Figure 6 - Ambient Weight Vector Variation 

Error Analysis 

The goal for the estimator error is to be within +/- 1 dB of 

the actual measured SDR input power for SDR input power 

between -130 dBm to -90 dBm.  Histograms of the error for 

each waveform are shown in Figure 7.  The two waveforms 

with the most error (18k, uncoded, SA & MA) are the 

waveforms in which the data set was the largest.  This error 

is attributed to variation in test setup and the measured SDR 

input power calculation.  Another source of error is due to 

the fact that the digital AGC will vary +/- 3 units for a 

constant SDR input power.  A regression plot of all eight 

waveforms is shown in Figure 8. 

 

Figure 7 - Adaptive Linear Combiner Estimator Error 

Histograms 
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Figure 8 - Adaptive Linear Combiner Estimator 

Regression Plot 

 

4. NEURAL NETWORK ESTIMATOR  

The neural network estimator uses the digital and analog 

AGCs, the GD SDR baseplate temperature, and a waveform 

ID to estimate the SDR input power over an input power 

range from -130 dBm to -90 dBm.  A block diagram of the 

neural network estimator is shown in Figure 9.  The neural 

network estimator is based on a feed-forward neural 

network as described in [5].  The neural network is based on 

a feed-forward neural network, shown in Figure 10  which 

consists of a single hidden layer with 20 neurons in one 

hidden layer, with the tangent sigmoid as the transfer 

function in the hidden layer and a linear transfer function in 

the output layer.  The network has one output neuron, 

because there is only one target value associated with each 

input vector.  The input vector consists of the digital AGC, 

analog AGC, the SDR baseplate temperature, and the 

waveform ID.  The target vector is the measured SDR input 

power.  The neural network estimator was implemented in 

Excel to mimic the neural network estimator model so it 

could be implemented in the ground software for the SCaN 

Testbed. 

Analog AGC

Digital AGC

Baseplate 

Temp

WF ID

Neural Network

(weights and 

bias)

SDR Input Power 

Estimate

Σ
SDR Input Power 

Measured Target 

Data (T)

Error +

-

Inputs (X) Output (Y)

SDR Input Power 

Calculated Data 

(Targets, T)
 

Figure 9 - Neural Network Estimator 

 
Neural Network Estimator Algorithm Description 

A general outline of the neural network estimator is listed 

below: 

(1) Input the training data set, which consists of the digital 

AGC, analog AGC, baseplate temperature, waveform 

ID (X) and measured SDR input power (T). 

(2) Create feed-forward neural network 

a. Train the neural network. 

b. Simulate the neural network. 

c. Obtained weights and bias.  

(3) Normalize the input and target vector by obtaining the 

max and the min values, using equation 6. 

For steps 4 through 6 see Figure 10. 

(4) Calculate the sum of the weighted inputs and the bias, 

Sm using equation 7.  

(5) Calculate the output to the tangent sigmoid transfer 

function, a, based on output from step 4, using 

equation 8.  

(6) Calculate the sum of the layered weighted inputs and 

the bias, yn, using equation 9.  

(7) Denormalize the vectors using equation 10. 

(8) Calculate the estimated SDR input power, Y, as shown 

in equation 11, using the weights and bias obtained 

from the neural network. 

(9) Compare the output (Y) to SDR input power measured 

target data, T. 

(10) Analyze the error; train and simulate the neural 

network to obtained new weights and bias if necessary. 
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Weight and Bias Vectors Description 

The feed-forwad neural network was implemented in a 

Matlab function to obtain the weights (IW, LW) and bias 

(bias1, bias2) vectors to be used in the neural network 

estimator algorithm.  The weights and bias were iteratively 

updated to minimize the mean square error function 

between the target and the SDR input power estimate and to 

obtained the optimal weights vector. The weights and bias 

vectors have been input in the ground software for the SCaN 

Testbed and are used to calculate the SDR input power in 

real time.  

 

Figure 10 – Feed-forward Neural Network 

 

  (6) 

where 

n = Number of inputs 

X1 = Digital AGC 

X2 = Analog AGC 

X3 = GD Temp2 

X4 = WFID listed in Table 1 

   (7) 

  (8) 

  (9) 

  (10) 

  (11) 

 

Training and Simulation 

After the network was created and all weights and biases 

have been initialized, the neural network was trained, so that 

a particular input lead to a specific target output, the SDR 

input power measured data. 

The network used the Levenberg-Marquardt algorithm for 

training.  The algorithm is performed in such a way to 

minimize the mean square error between the SDR input 

power estimate and the target value, the SDR input power 

measure data, and the weight correction.  The mean square 

error of the SDR input power error is minimized while the 

network is trained to search for the optimal weights vector.   

Equation 12 is used to update the weights.  The learning 

rate, which is multiplied by the negative of the gradient, 

determines the changes to the weights and biases.  If the 

learning rate is set too large, the algorithm is unstable and if 

is set too small, the algorithm take a longer time to 

converge. 

  (12) 

where Δwij is the weight modification term weights, this 

term is added to the weight at the weight updating, and η is 

the learning rate. 

  

The function randomly divides input vectors and target 

vectors into three sets as follows: 60% are used for training, 

20% are used to validate that the network is generalizing. 

The last 20% are used as a completely independent test of 

network generalization. 

 

The Levenberg-Marquardt algorithm was used for faster 

convergence and because is able to obtain lower mean 

square errors.   

 

After the network is trained, a simulation process is 

performed to check that the SDR input power estimate has 

low error with respect to the measured SDR input power.  If 

the simulation reveals data outside the fit line as shown in 

Figure 11, that randomness indicates that the model does not 

properly fit the data and since the goal is to extract the 

weights and the bias vectors from this simulation, then it is 

important that the model reflects a good fit.  The data 

outside the fit line is the difference between the measured 

SDR input power data and the values that the neural 

network model predicts, estimated SDR input power data.  

This training process is repeated until there is a good fit so it 

can provide a more reliable estimate.  The Target in the x-

axis of Figure 9 is the measured SDR input power data and 

the Output on the y-axis is the output generated by the 

neural network (estimated SDR input power).  Figure 12 is 

the final result of the training process and it shows that there 

is a good fit between the measured and estimated SDR input 

power and therefore, low error.  It indicates that the weights 

and the bias vectors are the final set to be used in the 

algorithm for estimating SDR input power. 
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Figure 11 – Neural Network Estimator Regression Plot 

(Training) 

 

Figure 12 – Neural Network Estimator Regression Plot 

(Final)  

Error Analysis 

The goal for the estimator error is to be within +/-.5 dB of 

the actual measured SDR input power for SDR input power 

between -130 dBm and -90 dBm.  Histograms of the error 

for each waveform are shown in Figure 13. 

 

 

Figure 13 - Neural Network Estimator Error Histograms 

 

4. SNR CALCULATION  

The SNR can be calculated from the estimated SDR input 

power.  The equations used in this test to calculate the SNR 

are listed below in equations 13-15.  This method assumes a 

constant noise floor and was used extensively during the 

pre-launch testing phase on the ground for the SCaN 

Testbed.  Since the AGCs detect total SDR input power, if 

the noise conditions change or there are interferers present, 

this method of computing the SNR may not be valid in 

those situations.  It will be used in the coming months to 

calculate the SNR and create bit error rate (BER) curves 

while characterizing the GD SDR receiver performance on 

the ISS in a variety of noise and interferer conditions.  This 

data will be used to determine if and or when these 

equations can be used to calculation the SNR. 

  (13) 

  (14) 

  (15) 

where 

Eb =  Energy per bit 

No =  Noise power spectral density 

Pin = SDR calculated input power from AGCs 

-174dBm/Hz = Theoretical noise floor 

NF = Receiver noise figure 

Data Rate = 18000 or 72000 
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5. RESULTS 

Implementation in Ground Software 

Each SDR input power estimator was implemented in the 

ground software for the SCaN Testbed.  The benefit of 

implementing the estimators in ground software over flight 

avionics software or radio software is that the estimators are 

much easier to update and they do not use the limited flight 

resources.  The varying parameters for each estimator were 

placed in a configuration file, so when the parameters need 

to be updated, all that needs to be done is edit the 

configuration file.  This implementation keeps with the 

spirit of design for software defined radios.  If a new 

waveform is developed, the ground software configuration 

file can be updated with the new waveform, but no code 

changes to the SDR input power estimator algorithms will 

be necessary. 

 

The AGC telemetry from the GD SDR will vary slightly 

with the constant SDR input power.  This variation can lead 

to a variation of several dB in the SDR input power 

estimator.  In order to minimize this variation to less than .5 

dB, a moving average filter of 5 samples was implemented 

in the SCaN Testbed ground software.  The AGCs and 

temperature telemetry are sent to the moving average filter 

before being input into the SDR input power estimator.  

This leads to a much more stable, yet still responsive power 

estimate. 

  

Initial Results from Operation on the International Space 

Station 

The GD SDR input power estimators were first used during 

the initial installation checkout of the SCaN Test on the ISS 

in September 2012.  During checkout, the operation of all 

subsystems on the SCaN Testbed was verified.  The GD 

SDR input power was predicted using Satellite Tool Kit 

(STK) models and the input power estimators were used to 

estimate the GD SDR input power during communication 

passes with TDRSS.  The 18 kbps, uncoded, SA receive 

waveform was used because the most data was collected for 

this GD SDR waveform.  Three passes were completed in 

September 2012 with GD SDR baseplate temperatures 

ranging from +4 to +9 °C.  Initial results are shown in 

Figure 14 to Figure 16.   

The tests that were completed on 09/13/12 show that the 

linear adaptive and the neural network estimators are within 

2 dB of the predicted power.  The SDR input power was 

higher than the valid range for the straight line estimator and 

this accounts for the error.  In the middle of the first pass, an 

unknown interferer began and this can be seen in the 

variation of the input power estimate.  The test completed 

on 09/26/12 shows that all three SDR input power 

estimators are within 2 dB of the predicted power. 

 

Figure 14 - GD SDR Checkout 09/13/12 Pass 1 

 

 

 

Figure 15 - GD SDR Checkout 09/13/12 Pass 2 

 

 

 

Figure 16 - GD SDR Checkout 09/26/12  
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6. SUMMARY 

Three SDR input power estimators have been created to 

calculate the SDR input power from the digital AGC, analog 

AGC, and baseplate temperature.  The estimators include a 

straight line estimator, an adaptive linear estimator, and a 

neural network estimator.  This paper describes each 

algorithm in detail.  Initial on-orbit test results indicate that 

the estimators perform within 2 dB of the predicted SDR 

input power for the 18 kbps, uncoded, SA receive 

waveform.  In the future, the three SDR input power 

estimators will be characterized on orbit for all eight 

waveforms over a wider operating temperature range and 

many different SDR input power levels.  Recommendations 

will be made on which algorithm is better for particular 

operating conditions.  The SNR estimation method will also 

be characterized to determine the conditions under which it 

can be used.    
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