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● The highly nonlinear restructuring kinetics of arrested system is both a current
intensive topic and investigation, an a theoretical challenge in statisticalmechanics

● On earth, restructuring is due to gravitational stress. But arrested systems such as
weak gels very probably embody “intrinsic” internal stresses generated intheir
formation. To invesigate how the latter spontaneously relax require getting rid ofg.

● As we shallsee, short-rangeattractiveinteractionsbetweencolloidal particlesprovide● As we shallsee, short-rangeattractiveinteractionsbetweencolloidal particlesprovide
a unique way to trigger the formation of colloidal gels with tunable strength.

● The key strategy of this proposal is using a system where depletion interactions can be
carefully and quantitatively controlled. Temperature can be used as a tuning parameter
allowing to homogenously drive a system from an equlibrium suspension state to a long-
lived metastable gel.

● Depletion interactions due to the addition to a colloid of high molecular weight
additive are a well studied tool to tuneshort-range attractive interactions.
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B) REVIEW OF GROUND-BASED EXPERIMENTS

SYSTEM

PARTIALLY CRYSTALLINE

IVV
IVH

OPTICALLY ANISOTROPIC

DEPOLARIZEDSCATTERING

IVH IS INSENSITIVE TO PARTICLE INTERACTIONS !
(useful for sedimentation studies – see below)

DISTINCTIVE OPTICAL PROPERTIES
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•Adsorb on MFA, leading to steric stabilization

• MICELLAR DEPLETION at larger surfactant concentration

DEPLETANTS
Triton X100/CmEn (nonionic surfactants)

Hydrophilic head

Hydrophobic tail

• Phase separation with water by raising T(T-dependent micellar interactions)

EXAMPLE: C12E8

IDEAL
EXP.

RANGE

8%

50°C

C12E8 concentration

T

≈ 70°C

≈ 2%

L-L coexistence

LC r ≈3.5 nm

Aggregation number
N ≈ 100

Globular
Micelles



STEP1: EXPLOITING EQUILIBRIUM SEDIMENTATION
TO PROBE THE EQUATION OF STATE & PHASE DIAGRAM

Ref.: S. Buzzaccaro, R. Rusconi, and R. Piazza, ‘‘Sticky’’ Hard Spheres: Equation of State, 
Phase Diagram, and Metastable Gels, Phys. Rev. Lett.99, 098301 (2007)
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BIRTH OF A GEL
By quenching into L-L coexistence:

FAST SEDIMENTATION 
(hours vs. months!)

An expanded gel phase
(the broken line is a comparison

to an equilibrium crystal)



Time evolution of the gel height (ΦP≈ 0.12,Uatt ≈ 4.5 kBT ) 

STEP 2: GROUND EXPERIMENTS ON GEL COLLAPSE AND 
RESTRUCTURING DUE TO GRAVITATIONAL STRESS

Ref.: G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, Highly nonlinear 
dynamics in a slowly sedimenting colloidal gel , Phys. Rev. Lett.106, 118302 (2011)
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Spinodal decomposition
and cluster formation

Settling of a cluster phase
(linear in time)

STEP 2: GROUND EXPERIMENTS ON GEL COLLAPSE AND 
RESTRUCTURING DUE TO GRAVITATIONAL STRESS

Ref.: G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, Highly nonlinear 
dynamics in a slowly sedimenting colloidal gel , Phys. Rev. Lett.106, 118302 (2011)

GELATION Poroelastic restructuring
of an arrested gel
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NEGLIGIBLE STRESS ON THE CELL WALLS (CONFIRMED BY POLARIMETRY)

POISSON RATIO ≈ 0 (LIKE CORK)

● THE VELOCITY PROFILE IS ALMOST

LOCAL SETTLING VELOCITY v(t) (AT VARIOUS SETTLING TIMES)

1)(
)(

)( −≈= t
t

t ε
ε
ση &
&

● THE VELOCITY PROFILE IS ALMOST
LINEAR FOR ANY SETTLING TIME, EXCEPT
IN THE UPPERMOST LAYER OF THE GEL.

t =30 h

t =80 h

●A z-INDEPENDENT (BUT t-DEPENDENT) 

STRAIN RATE: dzdvt /)( =ε&

● ON A PLANE AT COSTANT σ (SAME WEIGHT ON TOP) 
EFFECTIVE “COMPRESSIONAL” VISCOSITY:
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MICROSCOPICDYNAMICS

Local TRC correlation
functions in the gel

SAME decay time at all values of z
(as for strain rate!) 

τ1/e scales asε-1
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Casimir forces pop up also when
fluctuations are thermal instead of
quantum, e.g. close to L-L
demixing. (a “depletion” of critical
fluctuations!)

Universal scaling of the force
between a colloidal particle
immersed in a critical binary
mixture and the container walls

TIRM measurements of forces
between a silica plate and a
polystyrene sphere dispersed in a
critical liquid mixture.

● NONIONIC SURFACTANT/WATER MIXTURES DEMIX AT HIGH T, thus
CRITICAL EFFECTS YIELD CORRELATIONS IN THE DEPLETANT

ANY RELATION BETWEEN (CORRELATED) DEPLETION
AND THE CRITICAL CASIMIR EFFECT?
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1) Force is still a pressure unbalance(as in simple depletion)
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DFT RESULTS: CONCEPTUAL

2) Continuity between depletion interactions an critical2) Continuity between depletion interactions an critical
Casimir effect rigorously assessed.

- Far fromthe critical point Asakura-Oosawa potential
- Approaching Tc Scaling formfor the force:

);()( /1

3

νϑ yx
h
Tk

hF B=




∝
∝

ν

β

ε
εδ

hy

nx

(exactly as in Dietrich model)



DFT RESULTS: EXPLICIT PREDICTIONS

● Critical depletion forces are maximal
along the line of maximal susceptibility
(MAX SCATTERED INTENSITY)
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C) JUSTIFICATIONFORµ-GRAVITY
AND LONG-TIME MEASUREMENTS ONISS…

… SHOULD BE OBVIOUS FROMWHAT WE SAID!
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● Planning for an advanced light scattering facility, allowing for
Space-Time Resolved Correlation and Depolarized Light Scattering
studies has been made, and the apparatus is being built.

● However, no flight opportunities before 2014-2015.

● The microscope setup within ACE may allowfor important and
complementary studies.



D) SPECIFICEXPERIMENTS ANDREQUIREMENTS



A samples

15-32°C stable

32°-35°C gel

B samples

15°-30°C stable

30-35° gel

Black dots

(ISS experiment)

D) SPECIFICEXPERIMENTS ANDREQUIREMENTS

(ISS experiment)



Samples

B1 9% 1% (6)

B2 9% 5% (5)

B3 9% 10% (9)

B4 9% 25% (1)

ΦΦΦΦ C
12
E
8

ΦΦΦΦMFA PRIORITY

B4 9% 25% (1)

B5 9% 35% (8)

A1 8.5% 1% (10)

A2 8.5% 25% (2)

C1 8.75% 25% (3)

D1 8.25% 25% (4)

E1 9.25% 25% (7)



REQUIREMENTS



Triton X100 or C
12

E
8

depends on temperature control

range

REQUIREMENTS



REQUIREMENTS



REQUIREMENTS



REQUIREMENTS



0.35 sufficient!

REQUIREMENTS





Signal is “noise” added to a static background.

Resolution cannot be controlled by exposure





Allows us to perform DLS during

first stage of spinodal

decomposition





Check if applicable to spinodal

decomposition dynamics







Depolarized LS depends only on

particles concentration.





In trasmission configuration, the

control of condenser N.A. allows

to change the spatial coherence

of the source. LS measurements

can be made WITHOUT LASER if

not available.









E) PRELIMINARY TESTMATRIX









N.B. This procedure will be repeated at different heating rates




