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The muass ratio or the characteristic velocity for the take-
off of a space ship from the satellite orbit is computed for
(wo cases: the radial thrust, and the circumferential
ihrust.  The circumferential thrust is much more ef-
ficient in that the required mass ratio is much less than for
the radial thrust. Both cases show, however, an increase
of the required mass ratio and the characteristic velocity
+ith a reduction in acceleration. With circumferential
(hrust, the characteristic velocity increases by a factor of
two, when the acceleration is reduced from s g to Yam .

OR take-off of a rocket from the earth surface, it is con-

venient to have the initial trajectory in the vertical direc-
tion, and then the thrust should be considerably larger than
the initial weight of the rocket to overcome the gravity and
1 give an appropriate aceeleration. Depending upon the rela-
tive magnitudes of the aerodynamic drag and the weight,
the initial ratio of the thrust and the weight should be between
2 and 3 for minimum expenditure of the propellant. The
stuation is quite different for a space ship taking off from the
.atellite orbit: In a satellite orbit, the gravitational attraction
i~ completely balanced by the centrifugal force, and the ve-
iicle is effectively in a weightless state. This fact has led
many fanciers of interplanetary travel to conclude that take-
. irom satellite orbit requires only a very minute thrust.
For instance, L. Spitzer (1)? proposed a nuclear power plant
ior a space ship to be accelerated at only /s g. Another
examuple is the extensive discussion of interorbital transport
techniques by H. Preston-Thomas (2), based upon the as-
.umption of equally small acceleration. On the other hand,
W. von Braun (3) seems to prefer a very much larger accelera-
tion of approximately 1/: g for take-off from the satellite orbit.

The magnitude of the acceleration has a strong bearing on
the optimum type of power plant to be used: The ion-beam
rocket is only feasible for very small acceleration, while for
moderate acceleration, chemical rocket is required. There-
fore the question of the magnitude of acceleration is an im-
nortant one for interplanetary flight. The purpose of this
note is to compute the relation between the acceleration and
the mass ratio required for escape from the earth’s gravita-
tional field, starting from the satellite orbit. It is hoped that
the present investigation will give the future generation of as-
wenautical engineers a rational basis for designing space ships.
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Basic Equations

The problem considered is the motion of a space ship under
the influence of the rocket thrust and the gravitational attrac-
tion of a single massive body, say the earth. Then if the
rocket thrust is in the plane of trajectory, the trajectory of
the space ship will remain in a plane. Let the position of the
chip at any time instant ¢ be given by the polar co-ordinates r
and 8 (r is the distance from the center of attraction, and 8
the angular position). If the components of the rocket thrust
per unit mass of the vehicle are R in the radial direction and
© in the circumferential direction, and if ¢ is the magnitude of
gravitational attraction at the starting satellite orbit » = r
(Fig. 1), then the equations of motion of the space ship are

dr _ oy (n)?
Ir R+ dz) g (r) ........... 1]
’ d [, do\ _
and T\ Et) = rO. 12]

THRUST

TRAJECTORY

SATELLITE CORBIT

FIG. 1 TAKE-OFF FROM THE SATELLITE ORBIT WITH THRUST IN
THE PLANE OF SATELLITE ORBIT
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By using the subseript 0 to indicate quantities at the start-
ing instant ¢
orbit is given by

@3) g 3]

Initially, the radial velocity is zero, i.e.,

dr .
('(7[)0 =0....... ... [4]

These are the initial conditions.

For the space ship to have sufficient energy to escape the
earth gravitational field at the end of the powered flight, the
sum of the kinetic energy and potential energy must vanish at
the end of the accelerating period. Let that instant be de-
noted by the subscript 1. Thus, at{ = 4

17 7dr\2 do\? re?
(Y o e — g _ rs
2’_((11)1 ' (r df)::l g r O 2

With any specified variation of the thrust forces R and ©
as functions of time, the above system of equations determine
completely the take-off trajectory of the space ship. In the
following sections, two special cases of practical significance
will be discussed in detail: the case B = const, © = 0, purely
radial thrust; and the case R = 0, © = const, purely circum-
ferential thrust.

Radial Thrust

If the thrust is always radial and is proportional to the in-
stantaneous mass of the vehicle, a nondimensional thrust fac-
tor u can be introduced as

Furthermore, let

p is thus the nondimensional radial distance, and r is the non-

dimensional time. Then Equations [1] and [2] can be writ-
ten in the nondimensional form as

d? de\? 1 .
—f,’,=;.1-i—p(>—~—2 .............. [8]

dr?

and

(%(,, f{i) =0 (9]

Equation [9] can be immediately integrated and by using the
initial condition of Equation [3], the result of integration is

By substituting this equation into Equation [8], the final
equation for p is

The nondimensional radial velocity is dp’dr. This is re-
lated to the physical radial velocity dr/dt as follows

dr —d ¢
= \/groaf ................ [12]

Equation [11] can be rewritten as

ld 1 1
<1p<dr) _“+;3~;’

Since dp/dr = 0, when r = Dand p = 1 aceording to Equation
[4], the result of integrating the above equation is
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= 0, the equilibrium condition of the satellite .

(g_")z = 2u(p — 1) + -(1 - lq) -2 (1 - 1) 3
7 L £ ‘

Therefore the nondimensional time r can be calculated s .,
function of the radius p as follows

__fp pdp e
TN I D@ =+ ) .

With Equations [10] and [13], the end condition of Equa-
tion [5] can be written as

10 1 1\/ 1
stz -0+ (- 05) =2 (- )i+ 0

Or simply
=14 —
Then the velocities at the end of acceleration period are
a\ _  —V1+ (1w
(dr>, = Ve T3

and 14

( (@) N S
Tdr), T VTR (2
The time 7, for the powered flight can be obtained from Equu-

tion [14] by setting the upper limit of integration to p;. The
result of this integration is?

RPIvee+ 1D ( 2 —_1)
s \# T F \/8 : COS 2% F 1 +

1 _12;1-—1):] a7
=’ PN S T
E(\/sy R

where F and E are the elliptical integrals of first kind and
second kind, respectively.

If M (1) is the instantaneous mass of the space ship, and ¢
the effective exhaust velocity of the rocket, then

dir lg dar
—C‘a— —C \'E(It

RM = pgM =

Therefore the mass ratio My/M; can be calculated as follows:

log. (M,o/3,) = — ET
By using the result of Equation [17]

_c_ , 2Vl + 1) 1) /o
o b (o) = UL 4

‘p -2 = 1) ( L cosmi2e—1 1)’, e
(\/_cos_ % ¥ 1 + E \/.S.;:coh 9. 1)
When the acceleration is very large, x> 1, the integrand i

Equation [14] can be expanded in terms of this parameter
Then the mass ratio is caleulated as

1

T 403

The relation of Equations [18] and [19] is plotted in Fig. 2
For p = /5, the mass ratio becomes infinite. The reason i
that at this value of acceleration, there is a radial position
where the thrust force is equal to the gravitational attractiod
and no further inerease in the energy of the vehicle can occur-
Therefore the radial thrust per unit mass, if maintained con
stant throughout the powered flight, should be larger tha?
/s g.  With increasing thrust, the required mass ratio for e

\/——IOg,(‘Io/Vl) =1+ 5 24 g

* The author is indebted to Dr. Y. T. Wu who kindly upp“‘"i
the relation of Equation [17].
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ca. 2 MaSS RATIO FacTor (¢f vgre) loge (Mo M) acaiNsT
\(CELERATION FACTOR p FOR RADIAL THRUST. ¢, EFFECTIVE
.XHATUST VELOCITY; ¢, GRAVITY AT THE SATELLITE ORBIT OF
2aDIUS ro; My, INITIAL MASS; My, FINAL MASS; p, THE RATIO OF
~\STANTANEOTUS THRUST PER UNTT MASS AND § FOR RADIAL THRUST

ape from the earth’s gravitational fleld decreases. This
.rong dependence of the mass ratio upon the acceleration
etor is contrary to opinion that for take-off from satellite
«hit only very small thrust is required. The asymptotic
alue of log, (Mo/M1) is Vgro'c. However, there is no ap-
preciable improvement in going to higher thrust thanlg.

Equation {16] shows that at very large values of the accele-
r«tion factor g, the acceleration is accomplished in so short an
aterval that the circumferential velocity at the end of the
.cceleration remains at the initial value of v/gro. The radial
selocity increases from nothing at the initial instant to the
inal value of v/ gre.  The total kinetic energy is thus groat the
.nd of acceleration and this is equal to the negative of poten-
:ia] energy at that instant, since the radial position r must be
sructically the initial value ro under very large thrust. The
work of the rocket is to produce the radial velocity V/ gr.
Thus it is evident that the value of ¢ log. (My/ M) must be
\ gy, as the caleulation shows.

Circumferential Thrust

Ii the thrust is always circumferential and proportional to
the mass of the vehicle, then a new thrust factor » can be in-
trocluced such that

O = ¥f..... {20}

By using the same nondimensional variables as defined in
Fquation [6], the equations of motion are

p _ df 1 ]
T2 = P d7> PR 21}
d a9 .

T I’ 8;) B YD 22]

Tie initial conditions of Equation [3]and [4]are

f_i_B _ QE'_ . _ _ 52;
(dr)o— 1, df)o_o at p = 1, r =0...[23]
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Therefore, Equation [21] gives another initial condition that

d*p\ _
d12)0 =0 [24]
By eliminating 4 from Equations [21] and [22]
d [/, %
E(;ﬂ;ﬁ +p) f = L 23]

This is a third-order differential equation with three initia
conditions specified by Equations [23] and [24]. No simple
general solution can, however, be obtained. The following
discussion will be concerned with the approximations that are
valid for large values of v or for small values of ».

For very large values of v, the acceleration period is ex-
pected to be short and the change of the radial position to be
small. Then the value of p must be very close to the initial
value of unity. By taking p to be unity, Equation {25] be-

comes
i(d"p . 1)1"" _
dr \dr? =7
d%p

F + 1= C* 4+ 20vr + #3172
7

Then

where (' is the integration constant. C, however, must be 1
because of the initial condition of Equation {24]. The ap-
propriate approximate solution for o for very large » is thus

1
pElﬂ'—éyrS-{—ﬁv?r‘ .............. 126}

To obtain higher terms in this power series, the usual series
substitution method may be used. The calculation is some-
what lengthy and therefore will not be reproduced there. The
result is

v 2302

_— 1-3 ll‘_—_ 5 —
p=ltgvF VT T T 360

4. .. 27]

By using the result of Equation [27], the radial velocity is
obtained by differentiation. Then Equation [21] gives the
circumferential velocity. The end condition of Equation [51
can be modified into the following more convenient form by
mulitiplying it by 2r®

do\? do\?
0= [(7) + (= 5) - »]

By substituting the solution of Equation [27] into this condi-
tion, an equation for determining r,is obtained

0= —14 207 + #21,° — g’ v+ vint
310 (1 + 260775 — ;;—(') (4= 13)rf + 128!

The mass ratio My M, can be caleulated in the same way
as in‘the previous section and can be determined through the
new parameter x defined as follows

e tog, (My M) = v = 2o (291
N gra

Equation [28] then can be written as

2r? It ° 13 r? 2
= — T YR TN S oI TS S cs N oI
0 1 s el 3, T V‘l+30p4 15 5 i
13 18 .
SS T 30]
90 »* 301

Since the calculation is designed for large values of », the
appropriate expansion of r should be a series in inverse
powers ». FEquation [30] suggests sperifically

e A i .
I(V)=I‘°'+7 + - 4o 31}

where 207, /0, and z® ave constants independent of ». By
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substituting Equation {31] into Equation [30] and equuting
equal powers of », the following set of equations results,

O L 220 — 1 =0, ... {32;
o= 2—(1—‘1—10—) [g T0E — plus i—g’zm’i - glj?) 1"0":} ...33
0 m [_Iu)f e 2p @ L 0D

3—10 0" — 1—33 oy 4 4—23 zlod — %—grf‘”srf”] ....... {34

The explicit numerical solutions are then

I = /2 — 1 = 0.41421
x® = 0.002349
T® = —0.0000479L... . ... .. .. .. ... 135]

This completes the calculation of mass ratio for large values
of the aceeleration factor ».

For the other extreme case of very small values of », it is to
be expected that the acceleration will be very small, and in
Equation [25] the term p%d%p.dr? will be very much smaller

than p. Therefore a good approximation of Equation [25] at”

small vis

The solution of this equation with the initial condition of
o=1latr=0Is

1 I3 -
o = (l—j‘;j‘_, .................. 36
Therefore
de _ 2y dh 6 -
dr (1 = »yr)¥ de* (1 — w7 i

At 7 = 0, the radial velocity and the radial acceleration are
thus not zero, as required by the initial conditions of Equa-
tions [23] and [24]. They are, however, very small, because
vis very small. Therefore the solution of Equation [36] iz a
good approximation to the exact'solution.

To the same approximation, Equation [20] becomes

pg_’_=ﬁ2 =1 —wr). . ... {38}
This means that at every instant, because of the extremely
small acceleration, the centrifugal force per unit massr (dg dt)*
practically balances the gravitational attraction. The end
condition of Equation [5] can then be written as

47 .
(—14_'_1’7)5—(1 —1‘)2=0 ............. [39

where z is again »7;.  The appropriate solution for z is then
T o=1 = (@) 140

Since the mass ratio, 3o/M;, is related to z by Equation [29],
Equation [40] actually gives the mass ratio for escaping the
gravitational field with very small acceleration.

The parameter z is plotted against » in Fig. 3, using Equa-
tion [31] with both Equations {35] and [40]. When » ap-
proaches zero, z approaches 1. When » is very large, r ap-
proaches V2 —1. Asy inereases, r and hence the mass ratio.
Mo/M,, decrease monotonically. Therefore, same as the re-
sult for purely radial thrust, there is a strong influence of the
magnitude of acceleration on the required mass ratio. How-
ever, as far as decreasing the mass ratio is concerned, there is
no appreciable advantage in using » greater than 1/..

When the acceleration factor ».is very large, the thrust
force acts like an impulse.  Since the thrust is in the eircum-
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FIG. 3 MASS RaTIO FacTOR {(¢/\gro) loge (Ms/My; acaixw
ACCELERATION FACTOR » FOR CIRCUMFERENTIAL THRUST.
EFFECTIVE EXHAUST VELOCITY; ¢, GRAVITY AT THE SATELLITS
ORBIT OF RADIUS 7g; "My INITIAL MasS; M), FINAL MASS! ». Tij
RATIO OF INSTANTANEOUS THRUST PER UNIT MASR AND » rok
CIRCUMFERENTIAL THRUST

ferential direction, the rocket action only produces an inereus
in the circumferential velocity with practically no chanye i
the radial position. The initial circumferential velocity i-
\’/g;?:; the required circumferential velocity for escupe i
NV Tgrg Thus the increase of velocity produced by the rorket
action is (/2 — 1) \/g_m This explains the asymptotic
value of x for very large ».

Discussion

By comparing Fig. 2 with Fig. 3, it is apparent that the
radial thrust is much less efficient than the circumferentin!
thrust for take-off from the satellite orbit. For large thrusts.
the value of log (Mo/M)) for radial thrust is more than twice
that for circumferential thrust. Furthermore, in case o
radial thrust, the ratio of thrust to the instantaneous mas=. if
maintained constant, must be larger than ¢/8. In case o
circumferential thrust, no such limit exists. Therefore, ¢ir-
cumferential thrust is definitely preferred.

The quantity ¢ log, (3Ms/M,) is a measure of the perforn:-
ance or the capability of the vehicle. It has the dimension
of a velocity and is actually the increase of velocity which the
vehicle is capable of in a space without gravitation. Thi
quantity is conveniently called the characteristic velocity of t%!“
vehicle. Let this be denoted by V' Then for the case of rit-
cumferential thrust, Equation [29] gives

V = clog (Me/M) = Vigrez = ;S_ T i1
V2N

where S is the “escape velocity” from the surface of the earth.
and X is the ratio of the radii of the satellite orbit and the
earth. Sisequalto 11.2 km/sec. Fig. 3 then shows that by
decreasing the acceleration from 1/, to /s g, T, hence the 1¢-
quired characteristic velocity ¥V, will increase by a factor v
two. This is a very important point for the designers ¢
space ships.
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