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Condensed Abstract

A tool developed for the preliminary design of low-thrust trajectories is described. The
trajectory is discretized into segments and a nonlinear programming method is used for
optimization. The tool is easy to use, has robust convergence, and can handle many
intermediate encounters. In addition, the tool has a wide variety of features, including
several options for objective function and different low-thrust propulsion models (e.g.,
solar electric propulsion, nuclear electric propulsion, and solar sail). High-thrust,
impulsive trajectories can also be optimized.



Extended Abstract

In this paper we describe a tool developed primarily for preliminary design of
low-thrust interplanetary trajectories, including those with multiple gravity assists. The
name of the tool is MALTO (Mission Analysis Low-Thrust Optimization).

Trajectory Structure

The trajectory is divided into legs that begin and end at control nodes. (See
Figure 1.) Typically, the control nodes are associated with planets or small bodies, but
they can be free points in space. On each leg is a single match point, and the trajectory is
propagated forward in time from the leg’s earlier control node to the match point and
backward from the leg’s later control node to the match point.

Continuous thrusting is modeled as a series of impulses. The legs are subdivided
into segments with an impulsive AV in the middle of each segment. When modeling low-
thrust propulsion systems, the magnitude of the impulse is limited by the amount of AV
that could be accumulated over the duration of the segment.

The propagation between impulses and nodes is according to a two-body model
with the Sun as the primary body. Flybys of planets are modeled as instantaneous
changes in the direction of the V., (relative velocity vector).

Optimization

This structure results in a constrained, nonlinear optimization problem which we
solve using the nonlinear programming software SNOPT. The potential set of
independent variables includes the state (position, velocity, and mass) of the spacecraft at
each control node and the corresponding epoch. If a control node is associated with a
solar system body, the position of the spacecraft is the same as the body and therefore is
not independent. The initial mass following a launch is determined using launch vehicle
performance data as a function of the magnitude of the V... There are three variables
representing the impulsive AV on each segment. Depending on the optimization
objective function and engine model, the solar array reference power and engine specific
impulse can be independent variables. We normally maximize final spacecraft mass or
net mass (final spacecraft mass — propulsion system mass), but other objective functions
are available.

The primary constraint on the optimization is that the position, velocity, and mass
of the spacecraft must be continuous at the match points. The magnitude of the thrust
may be constrained, and other constraints can be placed on the trajectory such as total
flight time and total propellant mass. In addition, upper and lower bounds can be placed
on any of the independent variables.
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Figure 1 Trajectory Structure
Graphical User Interface

The MALTO graphical-user interface (GUI) is run through Matlab and allows
users to graphically set up new input files, modify existing input files, and plot solutions.
The main panel is shown in Figure 2, and Figures 3 and 4 are examples of the type of
graphical output that is available.

hd MALTO GUI v. 1.1f :: malto_v4.1.2

CP1-2 |  CPiFee|CP2Fee| I Time Panel | Grew tmsins | 4 e | 4 TeiPlat | Save Input
Dep  pope  — | Spiral Cap/Esc CR#l Farel | Computed i | o SofiEngPanel | 4 StatesPlot | Load Input
i 0 o | Ballisic | o I0FkPand |t @piral Guess Farel | Flot Solution
AT Wone | SPiral Cap/Esc CP#z Thrust Profile Zeros = i Conversion Parel | 1 Hidas Guess Panel | Int. Plot |4 overay |
it ] Seqs Before BF 1 User-Def. Bady
Flyby | Tum |t | Total Segs 1 Constraint Panel | OptFanel |1 Froponly |
Flyby Distance 0 a BP Fraction - Maon-Bady CF _I Feasihle Point
Win Sol Rad -1 add Leg| Del Leg :| Bt GiE | 1 Circular Co. |
All vectors are EMOZ000

Figure 2 Main MALTO GUI panel
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Figure 3 Example Trajectory Plot from MALTO GUI
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Figure 4 Example Output Data Plot from MALTO GUI
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