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1.0 EXECUTIVE SUMMARY 
The richness and diversity of the outer planets and their satellites are second to none in the 

Solar System, but to explore the outer solar system requires advanced technology. The Outer 
Planet Assessment Group (OPAG) recommends the following to enable this exploration: 
1. NASA should work with the relevant agencies to ensure that Pu-238 production is restarted 

and provides enough material for future outer planet missions. In particular, NASA should 
flight-qualify ASRG power systems. 

2. A focused technology program for the next Outer Planet (OP) Flagship mission after the 
Europa Jupiter System Mission (EJSM) should be initiated in order to be ready for a launch 
in the mid-2020s. Current planning indicates a mission to Titan and Enceladus will be the 
highest priority. NASA should fund development of the montgolfière balloon, the autonomy 
required to operate it at Titan, landing technologies required for sampling the high latitude 
lakes, dunes and cryovolcanic regions and components operable in extreme environments. 
NASA should also initiate a program in cryogenic sample acquisition and sample handling. 

3. NASA should expand the funding of communication and radio science technologies required 
for the outer planets, especially making Ka band operational and furthering proximity and 
direct-to-Earth communication technologies. 

4. NASA should continue to invest in development of underlying technologies (thrusters, 
power and control, propulsion technologies) for solar electric propulsion, to bring these sys-
tems to flight readiness and to make the capability affordable to and within the risk post-
ures of different mission classes.  

5. NASA should invest in aerocapture technologies and conduct a space-flight validation of 
aerocapture in advance of the decision points of identified missions. 

6. For planetary probes, OPAG recommends investment in the development of alternative 
thermal protection systems (TPS) materials, and periodic limited manufacturing and testing 
demonstrations to ensure heritage TPS manufacturing is kept current. 

7. NASA should achieve a better balance between component development, in situ and re-
mote sensing (active and passive) instrument definition, and instrument development, with 
a focus on demonstrating complete instrument systems and bridging the gap to flight. An 
OP instrument program should focus on developing and maturing low mass/power instru-
ment systems that have high resolution and sensitivity, raising the TRL to >6.  

2.0 OVERVIEW 
The challenges common to all OP missions—large distances, long flight times, and stringent 

limitations on mass, power, and data rate—mean that all missions can significantly benefit from 
technical advances in a number of broad areas. Since technology development timescales are 
long, it is most productive to base technology requirements on the expected general characte-
ristics of future missions. While the Flagship mission concepts are better understood, an esti-
mate of the needs for competed small class (Discovery) and medium class (New Frontiers) 
missions can be included in constructing an effective technology investment plan.  

Technology investment priorities are guided by the requirements established in mission and 
system studies that are focused on the highest priority science objectives. The next OP mission 
(after EJSM) would involve orbiting the saturnian satellites, Titan and Enceladus. The nominal 
mission concept involves orbiting and in situ elements, as confirmed by the science panel for 
the 2008 Titan Saturn System Mission (TSSM) concept review. In situ elements are envisioned 
to be aerial and landed platforms with sampling capabilities. New Frontiers or small flagship 
missions that may be realizable in the 2013-2022 timeframe include shallow atmospheric 
probes of the giant planets and an advanced flyby of an ice giant and its satellites.  Subsequent 
potential OP large-class missions include orbiting Neptune and Uranus, landing on Enceladus 
and Europa, and probing deep into the atmospheres of the giant planets. 

The breadth of technology needed for OP exploration clearly calls for an aggressive and fo-
cused technology development strategy that aligns with the Decadal Survey recommended 
mission profile, and includes technologies developed by NASA, as well as acquisition of applica-
ble technologies from other government and commercial sectors. Some technologies of
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Table 1. Technology Priorities for Outer Planet Exploration. 
 Technology Priority Comments 
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Power  UP 
Radioisotope power systems would be needed for the next Titan/Enceladus Flagship mission, 
requiring a sufficient supply of 238Pu. Advances in power conversion efficiencies would reduce the 
quantity of 238Pu needed for a given power requirement, along with a mass savings. 

Transportation  1 
Electric propulsion would be strongly enhancing for most OP missions, including a Titan/Enceladus 
Flagship, and aerocapture technologies would enable a Neptune orbiter mission. These technologies 
provide rapid access, increased mass and/or lower mission risk. 

Communications  1  
The science return from every mission would benefit from improvements in communications 
infrastructure, including Ka band and direct-to-Earth communications. In situ exploration with orbital 
assets would be greatly enhanced by improved proximity links.  

Planetary  
protection  

2  
New planetary protection approaches and technologies will be required to meet the anticipated 
requirements for in situ exploration to targets of interest for astrobiology.  
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Mobility and 
landers  

1 

Access is critical to in situ exploration central to a Titan Flagship mission concept, making various 
types of mobility systems enabling, e.g., montgolfière balloons for Titan. Advances in autonomous 
mobility technologies could also provide alternatives for various New Frontiers mission concepts. 
Landers required with sampling acquisition and handling for Titan lake, dune & cryovolcanic regions.  

Extreme  
environments  

1  
The proposed missions span a number of diverse environments, requiring technology advances in 
fields ranging from low T and P, to high heat flux and pressure during atmospheric entry. In situ 
sampling and instruments would benefit from technology program. 

Entry systems 2  

New propulsive landing systems would enable operations on satellites without atmospheres. 
Investments required in key technologies for entry systems and planetary probes :extreme environ-
ment systems, miniaturized and low power integrated sensors, transmitters, and avionics, thermal 
materials, power management systems, entry/descent/landing technologies & on-board processing. 
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In situ instrument 
systems 

1  

New technologies and instruments would be required for improved science return to targets of 
astrobiological interest, enabling the proposed Titan/Enceladus Flagship mission. The instrument 
technologies would require associated development in sample acquisition and handling systems. 
Advances in thermal management are critical. Instruments required for Atmospheric probe missions. 

Components and 
miniaturization  

1  
Every mission is either strongly enhanced or enabled by improvements in miniaturization and 
advanced component design. A Titan/Enceladus Flagship mission would be strongly enhanced by 
development of miniature long-lived, low power cryogenic electronics.  

Remote sensing 
instrument 
systems 
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All missions with orbital or extended aerial operations would be strongly enhanced by improved 
technologies for passive and active remote sensing and radio science. High resolution and sensitivity 
instruments that are low in mass and power are required for a Titan/Enceladus Flagship.  

UP  Ultimate priority—Without new Pu-238, no further exploration beyond Jupiter will occur subsequent to EJSM. 
1 Highest priority—New developments are required for all or most future OP missions.  
2 High priority—Either the applications are more limited or NASA could effectively leverage existing work. 

importance to OP exploration are currently being developed by NASA’s Science Mission Direc-
torate (SMD), while some critical technologies have yet to be funded. Table 1 summarizes the 
technology priorities for OP exploration. A brief discussion of these technologies follows, but 
more information can be found in an extended document which will be available on the OPAG 
website.  This work is the culmination of a multi-institutional effort spanning several months. 

3.0 SPACECRAFT SYSTEMS TECHNOLOGIES  
3.1 Power 

Advanced power system technologies are required to enable and enhance many OP mis-
sions that require power systems with mass and volume efficiency, long-life capability and the 
ability to operate in extreme environments (e.g., temperatures, pressures). The power system 
technologies required include: radioisotope power systems, high efficiency solar arrays, high 
energy density storage systems, and power electronics. 
3.1.1  Radioisotope Power Systems (RPS) 

Most OP missions, because of the extreme environments they explore and limited solar in-
solation they experience, are likely to require RPSs for furnishing adequate electrical power. 
Missions beyond Saturn would benefit greatly from advanced >100 watt radioisotope power 
systems with long life capability (>20 years), high conversion efficiency (>15%) and high specific 
power (>8 W/kg). Some future planetary sensor network missions would require small long-life 
(milli- or multi-watt) RPSs. In particular, unique science opportunities using small measurement 
platforms at Titan, such as buoyant-gas weather balloons, and a network of small geophysical 
landers, analogous to those proposed for Mars and the moon, would be enabled by small RPSs 
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of the few-10 watt class. In addition, some missions could require kW-class RPSs for ion propul-
sion applications. NASA-SMD is currently developing a 140 W Advanced Stirling Radioisotope 
Generator (ASRG) capable of providing 6–8 W/kg and 30% efficiency. NASA-SMD is also devel-
oping advanced thermoelectric (TE) and thermo-photovoltaic (TPV) conversion technologies 
(static power-conversion systems) that are capable of providing >6 W/kg and >10 % efficiency.  

Future NASA-SMD RPS technology efforts should, foremost, validate ASRG technology for 
long-life flagship and other missions. Such efforts should, in addition 1) mature and validate 
advanced TE and TPV technologies for long-life and high reliability missions, 2) develop small 
(milli-/multi-watt) radioisotope power generators for sensor networks, and 3) develop kilowatt 
class radioisotope power generators for radioisotope electric propulsion (REP) missions. Cur-
rently, there is an insufficient supply of Pu-238 to fuel all potential RPS systems that would be 
base-lined for future OP missions, and none will be left for any civilian space application after 
the Jupiter Europa Orbiter (JEO) portion of EJSM (Hoover et al. 2009. Radioisotope Power Sys-
tems: An Imperative for Maintaining U.S. Leadership in Space Exploration. National Academies 
Press, ISBN 0-309-13858-2, http://www.nap.edu/catalog/12653.html). As of this writing, 
whether Pu-238 production will be restarted by DOE in the near term is uncertain, and higher 
efficiency systems cannot by themselves mitigate a complete lack of plutonium. Future availa-
bility of Pu-238 is a make-or-break issue for OP exploration beyond Jupiter. 
3.1.2  Solar Arrays 

Planetary missions beyond 3AU require solar cells that can operate efficiently at low solar 
intensities and low temperatures (LILT). High power solar electric propulsion (SEP) missions 
require advanced solar arrays with higher efficiency (>35%), and high specific power 
(>300 W/kg). No significant efforts are presently underway at NASA to develop advanced solar 
cells and arrays required for future OP exploration missions. 
3.1.3  Energy Storage Systems 

Advanced primary batteries with high specific energy (>500 Wh/kg) and long storage-life 
capability (>15 years) are required for future planetary probes and lander missions. OP surface 
missions require primary batteries that can operate at temperatures < –80°C. Advanced re-
chargeable batteries with high specific energy (>200 Wh/kg) and long-life capability (>20 years) 
are required for future orbital missions. No significant efforts are presently underway at NASA 
to develop advanced primary and rechargeable batteries required for future missions, but 
NASA must increase the lifetime and robustness of commercial batteries for OP applications.  
3.1.4  Power Electronics Technologies 

Advanced power conversion, management and distribution technologies with higher power 
density (>150 W/kg), higher conversion efficiency (>90%), and capability to survive in extreme 
environments are needed for most of the future OP missions. Future SEP missions require 
power systems with high power capability (> 20 kW), high voltage (> 120 V) and high power 
density. Again, no significant efforts are presently underway at NASA to develop these ad-
vanced power conversion, management, distribution technologies or advanced packaging 
concepts for high power devices for future solar system exploration missions. 

Recommendation 1 (Power): OPAG strongly recommends that NASA work with the rele-
vant agencies to ensure that Pu-238 production provides enough material for future OP mis-
sions, and fully support the validation of the ASRG system for OP applications, including the 
development of small (milli-/multi-watt) radioisotope power generators for sensor networks. 
In addition, NASA should adapt and complement industry-developed advanced solar cell and 
array technology program, advanced battery technology, and advanced power conversion 
and distribution technologies program for OP missions. 
3.2 Transportation Technologies 
3.2.1  Electric Propulsion 

Electric Propulsion (EP) enables missions requiring large in-space velocity changes over time 
and can often provide enhanced and enabling trajectories to the outer planets. This technology 
opens up mass and trip-time trades, offering major performance gains and significant im-
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provements to mission capabilities. Development efforts are underway, but sustained invest-
ments are still required. The resulting systems would provide substantial benefits to near-term 
SEP and long-term REP OP missions.  
3.2.2 Aerocapture 

Aerocapture is enabling for a Neptune orbiter and useful for other missions, since reducing 
the very high arrival velocity with propulsion requires more fuel than current launch vehicles 
can inject. It uses high-heritage elements of previous spacecraft and hypersonic entry missions, 
but also involves one single unproven element: the exit phase of the atmospheric pass. An 
Earth flight validation would retire risk for immediate use. 
3.2.3 Astrodynamics 

Funding for application of the principles of celestial mechanics to the problem of the motion 
of spacecraft has been largely limited to the development and operations phases of flagship 
missions. Early funding for astrodynamics studies would produce new techniques prior to for-
mulation of missions, which could lead to novel and exciting concepts. 

Recommendation 2 (Transportation): SMD should continue its development of EP compo-
nents and consider development of an off-the-shelf multi-mission SEP module (not only for 
the OP missions) that would be available to users with acceptable cost and risk constraints. 
Aerocapture development should focus on needs identified for Titan and Neptune, and risk 
reduction resulting in flight readiness is strongly encouraged to open up this mission enhanc-
ing, and for Neptune, enabling technology. 
3.3 Communications 

Deep Space communication between Earth and the outer planets poses notable challenges 
for retrieving science data sets. Additionally, communications for in situ scenarios are particu-
larly challenging due to resource and geometric constraints. OPAG recommends that NASA 
develop the technology and implement the following (in priority order):  
 Baseline Ka-band communications, which can enable 4+ times higher data rates than X-

band, for missions that have high data rate science return requirements. 
 Invest in maturing the next generation transponder supporting: 10 Mbps uplink; 100 Mbps 

downlink; integrated proximity and direct-to-Earth communications (currently requires two 
devices); integrated radio science for atmospheric and gravity experiments with few-
micron/sec two-way Doppler capabilities. 

 Sustain and accelerate Deep Space Network (DSN) antenna arraying: develop Ka-band and 
X-band uplink and downlink arraying equivalent to a 70 meter (or larger) aperture.  

 Demonstrate and mature the technology required for OP optical (laser) communications 
flight transceivers for very high science data return (up to two orders of magnitude greater 
rate) in direct-to-Earth-mode from orbiters and the planetary surface, and access-link from 
surface-to-orbiters, with RF telecom for lower rate spacecraft telemetry. 

 Mature and advance higher-power transmitters. 
 Develop high-gain, light-weight, deployable Ka-band antenna technologies, 5-meter or 

larger for long distance, direct to Earth links.  
 Implement advances in data compression to more efficiently transmit science data to Earth. 
 Develop UHF antenna designs and relay systems with increased efficiencies for relay and 

proximity communications UHF transmitters.  
 Baseline more effective error-correcting coding techniques for missions. 

Recommendation 3 (Communications): NASA should expand the funding of communication 
and radio science technologies required for the OP, especially making Ka band operational 
and furthering proximity and direct-to-Earth communication technologies. 
3.4 Planetary Protection (PP) 

Forward contamination requirements can drive the cost and complexity of OP missions. 
These requirements not only could impact in situ exploration, but they could also impact orbital 
spacecraft that must avoid or be designed for potential impact with targets of biological inter-
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est such as Europa, Titan, and Enceladus during their planetary system tours. Although the 
Mars Exploration Program (MEP) is developing new PP technologies and approaches to address 
requirements for future Mars missions, they are likely to be very different from planetary pro-
tection requirements for OP missions and therefore insufficient. In part, this disparity stems 
from the unique environments that these targets present. System-level technologies for for-
ward PP would require early investment so that they could be incorporated into the spacecraft 
designs early in the study phase. For example, appropriate PP approaches for the detection, 
quantification, and accounting of terrestrial organisms on spacecraft need to be determined 
and developed. Development of integrated PP approaches for spacecraft assembly, as well as 
integration and test are also required to eliminate re-contamination to ensure that the space-
craft system is at the necessary level of sterility when it reaches the target object.  

Recommendation 4 (Planetary Protection): OPAG strongly recommends that PP require-
ments to the OPs be defined early, especially for Titan and Enceladus, and that investments 
be made to jointly develop solutions and technologies for PP and contamination control. 

4.0  TECHNOLOGIES FOR IN SITU EXPLORATION 
Future missions to the outer planets require direct access to the atmosphere and surface of 

planets and satellites. This is achieved through the use of landers, aerial platforms, and planeta-
ry probes, which are enabled by a family of technologies for in situ exploration.  
4.1 In Situ Platforms 
4.1.1  Mobility 

Previous studies have identified the montgolfière balloon as a key element in a comprehen-
sive Titan exploration strategy with very high science value. The most recent 2008 joint 
NASA/ESA TSSM study provided a compelling concept for implementation of a montgolfière at 
Titan. While orbiter and lander elements appear to have significant flight heritage, a balloon 
has not been flown on Titan and will require focused study and risk reduction efforts. Based 
upon the high priority of Titan science, results from many years of mission studies, and current 
state of technology readiness, NASA and ESA review boards have recommended the following 
be pursued to enable a balloon mission at Titan within foreseeable budgets and at acceptable 
risk: 1) conduct focused studies of Titan balloon mission options, leveraging from previous 
work, to focus on selection of architecture(s) that best achieve highest priority science and 2) 
initiate substantial sustained investment in risk reduction efforts needed to mature the Titan 
balloon concept for flight readiness. Risk reduction efforts include the following: balloon dep-
loyment and inflation, thermal performance margins, packaging and thermal management 
inside the aeroshell, interface complexity between balloon, RPS and aeroshell and integration 
of the RPS into the balloon. 

Additionally, long-term operation of mobile platforms would be faced with challenges be-
cause of the long latency in communications, communications blackouts due to Titan rotation 
and occlusion by Saturn, the absence of a magnetic field, low surface illumination conditions, 
and the lack of high-resolution orbital maps. Consequently, autonomous navigation and control 
and autonomous onboard science capabilities for data prioritization and opportunistic observa-
tions will be critical. Linking scientific observations to their coordinates on Titan would signifi-
cantly enhance the science value of an in situ mission.  
4.1.2  Landers 

The geological, geophysical and presumed geochemical diversity of Titan’s surface suggest 
at least three surface types that should be sampled by a future mission to Titan: 1) a Titan lake 
lander/submersible; 2) a dune lander, and 3) a lander positioned near suspected cryovolcanic 
structures. In all cases, objectives involve geophysical measurements as well as sampling and 
analytical chemistry in a cryo-environment. NASA should initiate a program in cryogenic sample 
acquisition and sample handling. Each of the Titan environments has its own unique require-
ments that need to be developed to achieve and maintain scientific integrity of samples prior to 
analysis. 
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Recommendation 5 (In Situ Platforms): OPAG recommends a sustained investment in this 
decade that would result in the demonstration of technical readiness for launch of a Titan 
balloon, and that NASA support the development of key autonomy capabilities required for a 
Titan balloon. Further, OPAG recommends that NASA invest in focused studies of Titan lander 
concepts and associated entry, descent landing technologies, and mature the technologies 
necessary for surface sampling in different environments. 
4.2 Entry Systems and Planetary Probes 

Because some of the OP targets have atmospheres and some are airless bodies, entry sys-
tem technologies include aeroshell and propulsion elements. Entries at smaller planets and 
satellites (e.g., Titan) could be achieved in most cases using existing TPS technologies, since the 
gravity field and entry velocities are sufficiently low. Certain architectures call for impactors 
(e.g., to Enceladus), where high g-load tolerant components are necessary. For aeroshells, 
suitable TPS should mitigate high convective and radiative heating and a long heat pulse.  

Key technology areas for future entry probes are development of 1) components and in-
strument systems that can withstand the high temperature/pressure environment during entry 
2) strong, lightweight materials that can provide improved payload mass fraction and 3) ther-
mal protection and control materials necessary to maintain the probe interior at moderate 
temperatures for missions lasting several hours. The highest velocity entry, at Jupiter, requires 
high-density carbon-phenolic (H-CP) similar to that used on the Galileo mission (made from a 
now-discontinued qualified rayon, whose production capability no longer exists). Probe entries 
to other giant planets face ~10 times lower heating rates, but still require H-CP. Finding an 
alternate to heritage H-CP is a long lead item and would require extensive technology matura-
tion and ground testing. Investment in developing an alternative to heritage H-CP is required as 
well as developing enhanced test facilities which would demonstrate and test TPS production.  

Recommendation 6 (Entry Systems and Planetary Probes): OPAG recommends invest-
ments be made in key technologies for entry systems and planetary probes; extreme envi-
ronment systems, miniaturized, low power integrated sensors, transmitters, avionics, ther-
mal materials, power management systems, entry, descent and landing technologies, and on-
board processing. 
4.3 Extreme Environment Technologies 

Low temperatures affect the operation of a large fraction of all the chemical, electronic, and 
mechanical components and can reduce the lifetime of components and sub-systems. Warm 
boxes, which increase the mass, have to be added to protect the components. New technolo-
gies can enable systems to tolerate operation in very cold environments. Low–temperature in 
situ missions to Titan, Enceladus, Europa and Triton would be strongly enhanced by develop-
ment of components such as actuators, motors, and instruments which can operate at low 
temperature. Similarly, for planetary probe missions, components and subsystems have to 
withstand extremely high temperatures and pressures.  

Recommendation 7 (Extreme Environments): OPAG recommends that NASA fund a tech-
nology program focusing on designing and testing low (and high) temperature components 
and sub-systems that could be used throughout the spacecraft (or probe) and instruments. 
Initiating this program as soon as practicable would have a major impact on the feasibility of 
a Titan Flagship mission and would also enable New Frontiers missions. 

5.0  SCIENCE INSTRUMENTS 
There are serious gaps in support of instrument programs, particularly in taking develop-

ment from concept stage to TRL 6. In addition, programs that have historically funded instru-
ment component technologies, which are crucial for developing the appropriate capabilities, no 
longer exist. 
5.1 Remote Sensing 

Remote sensing experiments are essential to any OP mission. To increase science return and 
achieve efficient mission designs, instruments have to be low in mass and require low power. 
For Titan missions, the instruments are required to see through the atmosphere to the surface 
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as well as analyze the atmosphere and measure its gravitational field. Instruments for both 
Titan and Enceladus have to be capable of high spatial (and in the case of spectrometers, high 
spectral) resolution and high sensitivity to answer the scientific questions that have emerged 
from Cassini. Such instruments do not currently exist at a high TRL levels. 
5.2 In Situ Instruments 

In situ instruments that facilitate atmospheric, surface and subsurface measurements have 
to tolerate extreme environments ranging from severe temperatures (<100–700 K), pressure 
(0–100 atmospheres), radiation, high-g loading for impactors (20,000–80,000 g), and possibly 
corrosive environments. Key technologies for such instrument systems include: cryogenic sam-
ple acquisition from atmospheres and surfaces; sample distribution/interrogation front ends; 
actuators; instrument electronic devices; battery technology; circuit technologies including 
packaging technologies for high-g impact loads such as impactors/penetrators; sample transfer 
staging technologies. Reducing the volume, mass and power requirements of instrument sys-
tems are essential for OP missions involving landers, mobility platforms, cryobots, or probes 
and penetrators in order to maximize the science return. Key geophysical instruments (e.g., 
seismometers and magnetometers) and analytic instruments systems (e.g., high resolu-
tion/sensitivity gas chromatography/mass spectrometers) should be developed.  

Recommendation 8 (Science Instruments): OPAG recommends that NASA initiate a well-
funded instrument development program that goes beyond the present low TRL instrument 
development programs. To prepare for future OP missions, NASA should establish a focused 
program that matures in situ and remote sensing instrument system concepts to TRL > 6.  

6.0 SUMMARY  
OPAG advocates a new focused technology effort as part of an OP Program in order to en-

sure readiness for launch of a mission to Titan and Enceladus in mid-2020s. Further, technolo-
gies that require long-term investment for missions beyond the next decade will be enabled 
and should also be considered. Table 2 shows a summary of the technologies required for 
specific missions.  

Table 2. Summary of Technologies required for Outer Planet Missions 
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Power          

 RPS E E E E e e  *E E e 

 Low intensity, low temperature solar arrays    e e e    

Transportation          

 Electric propulsion e E e e e  e e  

 Aerocapture  E  E      

Communications          

 Expanded Ka capability e e e e   e  e 

 Improved proximity links e    e e e e e 

 Improved UHF systems e    E e E e e 

Planetary protection measures e       e e 

Mobility  and Landers E        e 

Autonomy e       E E 

Extreme environments  e    e e e e E 

Entry systems (includes TPS) e E  e e E E E E 

Planetary probe S/C technologies      e e E   

In situ sensing of surface and atmospheres E    e E E E E 

Components and miniaturization  E e e e e e E E E 

Remote sensing  e e e e e e e e e 

Legend: E = enabling, e= enhancing (reduces cost and/or risk, increases performance) Spacecraft Systems); *need RPS or radio science for 

carrier-relay spacecraft that delivers probe.  


